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A basic consideration on the quaternion algebra
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1 Basic algebra in 4 dimensions
A quaternion algebra can be described as a 4-dimensional vector space with 
a canonical base {1, i, j, k } having the following Hamilton's multiplication 
rules [R3]:

i2 = −1 j2 = −1 ij = k ji = −k   (non commutativness)

The base components i, j, k can be seen as the complex numbers; similarly, 
a concept of conjugate can be defined. 

Conjugate: with  kjiQ 3210 qqqq  the conjugate is defined by kjiQ 3210 qqqq  .
Opposite: it is defined by kjiQ 3210 qqqq-     
Imaginary quaternion : when q0=0.
Quaternion product (basic form): it is a distributive non-commutative product using 
explicitly the Hamilton's rules 1,i, j, k with the multiplication table. 

For example ²q²q²q²q)qqq(q).qqq(q. 321032103210  kjikjiQQ

Other example: 1221 .. QQQQ 

There are no ambiguities with the definitions (or axioms) on a 4-dimensional canonical base, this is 
useful for fundamental algebra purpose, however this is quite heavy to use and there is no obvious 
meaning. Moreover, for some other users, the base is different { i, j, k, 1 } leading to confusions 

4321other qkqjqiqQ  . They may also use  4q q,Qother




2 Second representation with a real and a vector
One can write a quaternion as Q = {q0, q }  where q0 is the real part, and q is a vector having the 
components {q1, q2, q3} in the imaginary canonical base i, j, k . This base can however be regarded 
as equivalent to any geometrical base, for example the base of a 3-dimensional Cartesian frame. 
Hence a link between quaternion and a real geometric world is more obvious.

Note: an imaginary quaternion q is written as    QQ -q0,q 2
1

 where q is the unique vector 
corresponding to the imaginary quaternion q.

Quaternion product second form: 
21.QQ ={q0, q }.{ w0, w }= {q0.w0 - wq  

 ,  q0 w + w0 q   + wq  
 }
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where “  ”  stand for the scalar vector dot product and “  ” the vector cross product 
(right handed as usual). 

Note: the product of two imaginary quaternion {0, q }.{0, w
 } is simply :{ - wq  

 , wq  
 }. 

To get only the imaginary part of this quaternion (i.e. the cross product only), one shall 
consider the quaternion:    21212

1 .-.wq0, QQQQ
 i.e.    q.w-q.wwq0, 2

1
 . 

Quaternion product matrix:
It can be performed with standard matrix product “ “ 21.QQ =   21 QQ  =

where  1Q is a skew symmetric matrix defined with the coordinates

of  1Q (a bit similar to the multiplication table) and with 2Q written as a column matrix.
          

Also with writing 21.QQ ={ w0 .q0 - qw 
 ,  w0 q + q0 w - qw 

 }

one can define with 2Q a matrix  2Q̂ :   12 QQ̂  =                  

The two matrixes are not identical because  1Q is based on the coordinates of  1Q and  2Q̂ is based on 

the coordinates of  2Q . Moreover, one shall remember that the product is not commutative in general.

Unit quaternion: Among the quaternion, the ones used here are the unit quaternion: the 
norm being defined as QQQ . , a unit quaternion has a norm=1. 

Quaternion inverse: 1.. -1-1  QQQQ 2-1 /   QQQ  ; for unit quaternion -1 QQ  . 
Vectors and coordinates: Considering a first inertial frame "i" and a second frame for a 
body "b" having an instantaneous rotation 


. 

An abstract vector written with the letter V


is a very concrete concept that does not 
depends on any frame. But operationally, the vector belongs to a vector space (here a 3-
dimensions), so that the frame in which one write its coordinates is of prime importance: 
every scalar product, cross product, matrix form product, local derivative and even 
quaternion operation shall be carefully performed within the same vector space i.e. within 
the same frame used to write the coordinates of the vectors. 

More explicitly let’s use as superscript the frame in which the coordinates are written and used. 
The vector with coordinates written in the inertial framei is iV


; bV


is the same vector V


but with 
coordinates written in frameb and b

ib /


the instantaneous rotation of the frameb with respect to 
framei but with coordinates written in frameb. It is obvious to say that even if it is the same vector, 
the coordinates are in general not equal iV


 bV


, etc .

3 Third representation with an angle and a vector
For unit quaternion that are used now on, Q = { u2sin,2cos 

 } where u is a unit vector. This 
can be written shortly with the following Q (, u ). With this form, the quaternion gives the
orientation of a body with respect to a first framei: that is a rotation of angle  around u

considered as a vector with coordinates written in the first frame iuu 
 (because this axis is 

invariant by Q , either ib uuu 
 with the same coordinates in the two frames).

Note: there is not a unique unit quaternion giving an orientation: other possibility is to 
consider the rotation of angle 2-  around the axis u-  : that is: a quaternion or its opposite
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give the same orientation. Thus, when it is useful to keep the unit quaternion uniqueness for 
giving orientation: a possible rule is to select the quaternion having a positive first 
component 2cos  >= 0 and if not to use the opposite one. 

To orient: The meaning of a quaternion product 21.QQ is that it gives the orientation of a third 
frameb wrt a first framei, (body wrt inertial) performed with 1Q (, u ) and then with 2Q (, w ) 
where iuu 

 unit vector axis in framei and oww 
 is a unit vector axis in the second frameo

(orbit). This makes obvious the link between Euler angles or Cardan angles and the quaternion. The 
advantage of the unit quaternion is that because they always have a norm of 1, the special cases of 
indetermination (gimbals lock) with the other transformations can't occur anymore. Thus for a 
whole quaternion Q i,b= Q i,o. Q o,b we can deduce Q o,b= Q i,o-1. Q i,b where Q x,y is the quaternion 
from "x" to "y". 

Example 1: the successive rotations with the Cardan angles 
around the axes Z (yaw), then Y’ (pitch) then X’’ (roll) in the Euler's sequence (3; 2; 1) give the 
quaternion Q1(, Ze ).Q2(, Ye ).Q3(, Xe ). 

Example 2: the rotations with Euler's angles in Euler sequence (3; 1; 3) 
i around the axes Z (precession), then X’ (nutation) then Z’’ (spin) give the quaternion 
Q1(, Ze ).Q2(i, Xe ).Q3(, Ze ). 
Note: for orbital purpose,andi are the same, but here Is not the true anomaly, it should 
be understood as the angle +, with  the perigee argument.

Vectors derivation: One knows that the derivative of a vector V


depends on the frame in which 

the derivation is performed. bb
ib

b

b

i

b

i
b V

dt
Vd

dt
VdV




  /
//

/ where  in 
xdt

d
/

indice x/ stand for 

derivation reference frame, and where b
ib /


is the instantaneous rotation of the body frame wrt 

the inertial frame but with coordinates written in the body frame.

4 Sandwich product
The expression of a vector after an orientation given by a quaternion is the sandwich product

The rule for orienting a vector iV


from "i" to "b" by a quaternion Q= Qi,b is given by the 
sandwiching product: QVQV ii ..'  where ii VV '  and (without the vector arrow) are here the 

corresponding imaginary quaternion to the vectors iV


and iV '


. 
A subtle but evident relation is to be mentioned: we consider the frame "b" that is the frame "i" 
after the orientation defined by the quaternion Q i,b. Because the orientations change from "i" to 
"b" affect the whole frame, the coordinates of a vector before the rotation in the frame "i" and 
after rotation but in the frame "b" are always the same, we have ib VV ' . Thus, one also has

QVQV bi .'.'  . Either this is true for any vector, thus QVQV bi .. . For example QVQV i
b

i
i .//   . 

Inversely, the other form of sandwiching product, QVQV ib .. can be used to get the rotation 

matrix:   i
bi

b VRV  , with      QQR bi
ˆ

, 
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5 Derivation with respect to the time  [R1], [R2]
In the case of a quaternion Q (=Qi,b) that give the orientation of the body frame from the inertial 
frame, Q depend on the time because the body frame is mobile. To represent the orientation 
change, the quaternion Q(, u ) can be written with iuu 

 a vector of the inertial frame base (so 

that the inertial derivatives of those base vectors are null). Either kjiQQ
i

3210
/

qqqq
dt
d

     

(attention Q is a non-unit quaternion). 

6 Derivation of quaternion, relation with instantaneous rotation
From QVQV bi .. one can say that QVQQVQV bb

i
i  ..../  because derivative b

bV/
 is null, bV

being fixed in the rigid body “b”. It follows QVQQVQV bb
i

i ..../   , keeping in mind that 
bb VV  and QQ   . And one has also  bb

ibi
b VV

  // from the vector derivation, as the vector 
bV


is constant (i.e. fixed in the rigid body frame "b").

This last cross product can be written in quaternion algebra, as seen before, 

 bb
ib

bb
ibi

b VVV .. //2
1/  and thus  QVQQVQV bb

ib
bb

ibi
i ...... //2

1/  . Finally by 

identification, one set up a remarkable relation in the quaternion algebra: b
ibQQ /2

1 . (also 
1

/2
11   QQ b

ib
 ) where here b

ib / represent an imaginary and non-unit quaternion, =

rkqji  p0 , that has the same coordinates of the vector b
ib /


written in the body frame. 

Further, b
ibQ /.

2
1

 = )p0().qqq(q
2
1

3210 rkqjikji  , can be performed, as seen before, with 

matrixes in the form " 21.QQ =   12
ˆ QQ  ",    thus  b

ib /̂ = 
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give finally in 

matrixes:   QQ b
ib  /2

1 ˆ . This relation is used in several tools, in particular in [R 3].
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La mathématique	 des	 quaternions est	 une	 discipline	 étrange… La	 première	 fois	 que	 vous	 la	 découvrez,	 vous	 ne	
comprenez	rien...	La	deuxième	fois,	vous	pensez	que	vous	comprenez,	sauf	un	ou	deux	points...	La	troisième	fois,	vous	
savez	que	vous	ne	comprenez	plus	rien,	mais	à	ce	niveau	vous	êtes	tellement	habitué	que	ça	ne	vous	dérange	plus.	
attribué	à	Arnold	Sommerfeldpour	la	thermodynamique,	vers	1940.

-------------------------------


